Diastereo- and Enantioselective Synthesis of syn-α-Vinylchlorohydrins and cis-Vinylepoxides

Shaojing Hu, Seetharaman Jayaraman,* and Allan C. Oehlschlager*

Department of Chemistry, Simon Fraser University, Burnaby, B.C, Canada, V5A 1S6

Received May 14, 1996[®]

A new method to generate chiral syn-vinylchlorohydrins and cis-vinyloxiranes is reported. Reaction of $(\alpha$ -haloallyl)lithiums with methoxy-9-BBN or Ipc₂BOMe followed by treatment with BF₃·OEt₂ leads to (*Z*)-(γ -haloallyl)boranes which react with aldehydes to yield *cis*-vinylepoxides (de \geq 90%) upon oxidative workup. Alternatively, addition of ethanolamine to the allylboration product yields syn- α -halohydrins (de \geq 90%) that are also easily cyclized to *cis*-vinylepoxides. Extension of this protocol using [(Z)- γ -chloroallyl]BIpc₂ leads to chiral syn- α -chlorohydrins and cis-vinylepoxides in high de (\geq 90%) and ee (90–99%). Enantioselectivity of reactions of chiral (Z)-(γ -chloroallyl)boranes with aldehydes are more sensitive to reaction conditions than enantioselectivity of reactions of other α -or γ -substituted allylboranes. The effects of proportion of BF₃·OEt₂ and the relative efficacies of LiNR₂ bases on diastereo- and enantioselectivity of the chloroallylation are reported.

Introduction

Addition of allyl organometallic reagents to carbonyl compounds is an important method for the stereocontrolled formation of carbon-carbon bonds,¹ and allylic organoboranes are particularly versatile members of this class of reagents (Scheme 1).²⁻⁶

We have applied the allylboration of aldehydes to the preparation of syn-a-halohydrins and cis-vinylepoxides (Scheme 2). When boron possesses chiral ligands, the reaction sequence is enantioselective. The present route to syn-chlorohydrins⁷ is superior to other methods such as asymmetric reduction of α -halo-substituted ketones⁸ and opening of chiral epoxides.7a Under our allylboration conditions, syn-a-halohydrins are easily converted to vinyloxiranes.⁹⁻¹³ The primary advantage of the new methodology is in the ease of preparation of chiral cisvinyloxiranes which are obtainable only via Sharpless epoxidation of (Z)-allylic alcohols. Although Sharpless epoxidation proceeds with high enantioselectivity with (E)-allylic alcohols it gives variable enantioselectivity with the (Z)-isomers.¹⁴

(2) (a) Roush, W. R. In Comprehensive Organic Synthesis; Heathcock, C. H., Ed.; Pergamon Press: Oxford, 1991; Vol. 2, pp 1-53. (b) Barrett, A. G. M.; Malecha, J. W. J. Chem. Soc., Perkin Trans. 1 1994, 1901. (c) Barrett, A. G. M., Seefeld, M. A.; Williams, D. J. J. Chem. Soc., Chem. Commun. 1994, 1053. (d) Barrett, A. G. M., Seedfeld, M. A. Tetrahedron 1993, 49, 7857.

(3) Hoffmann, R. W. Pure Appl. Chem. 1988, 60, 123.
(4) Brown, H. C.; Jadhav, P. K.; Bhat, K. S. J. Am. Chem. Soc. 1988, 110, 1535.

- (5) (a) Hunt, J. A.; Roush, W. R. Tetrahedron Lett. 1995, 36, 501. (b) Roush, W. R.; Grover, P. T. Tetrahedron 1992, 48, 1981. Also, see ref 2.
- (6) (a) Ager, D. J.; East, M. B. Tetrahedron, 1992, 48, 2803. (b) Hoffmann, R. W.; Munster, I. Tetrahedron Lett. 1995, 36, 1434.
- (7) (a) Bonini, C.; Righi, G. Synthesis 1994, 225. (b) Wright, A. D.;
- Konig, G. M.; de Nys, R.; Sticher, O. J. Nat. Prod. 1993, 56, 394.
 (8) (a) Corey, E. J.; Bakshi, R. K.; Shibata, S.; Chen, C. P.; Singh, V. K. J. Am. Chem. Soc. 1987, 109, 7925. (b) Corey, E. J.; Helal, C. J. Tetrahedron Lett. 1993, 34, 5227.
- (9) Alexakis, A.; Cahiez, C.; Normant, J. G. F. Tetrahedron Lett. 1978, 19, 2027
- (10) Ley, S. V. Pure Appl. Chem. 1994, 66, 1415.
- (11) (a) Heumann, A.; Réglier, M. *Tetrahedron* **1995**, *51*, 975. (b) Barret, A. G. M.; Sturgess, M. A. *Tetrahedron* **1988**, *44*, 5615.

(12) Marshall, J. A. Chem. Rev. 1989, 89, 1503.
(13) (a) Tsuji, J. Tetrahedron 1986, 42, 4361. (b) Trost, B. M. Angew. Chem. Int. Ed. Engl. 1995, 34, 259. (c) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1987. 109. 3792.

Scheme 1. Allylboration Employing α- and γ-Substituted Allylic Boron Compounds

Results and Discussion

OH- / H2O2

BR₂ = 9-BBN or Blpc₂

Synthesis of (Z)-(*γ***-chloroallyl)boranes.** Sterically encumbered trialkylboranes normally react with α -substituted allyllithiums at the less substituted position to provide the corresponding γ -substituted allylboron ate complex.¹⁵ By contrast, (*a*-chloroallyl)lithium, generated in situ from allyl chloride and LDA, reacts with borate esters to produce ate complexes which yield (α -chloroallyl)boronate esters by dealkoxylation.¹⁶ The latter react with aldehydes to yield γ -chlorohydrins. If the borate reagent contains sterically demanding ligands, reaction with (α -chloroallyl)lithium leads to (α - and (γ -chloroallyl)boronates (Scheme 3).^{17b} Sterically less demanding 9-methoxy-9-BBN reacts with (a-chloroallyl)lithium to give predominantly the (α -chloroallyl)boron ate complex.¹⁸ Regioselectivity in allylborane formation thus

[®] Abstract published in Advance ACS Abstracts, September 15, 1996. (1) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207.

⁽¹⁴⁾ Johnson, R. A.; Sharpless, K. B. In *Catalytic Asymmetric Synthesis*; Ojima, I., Ed.; VCH Publishers: New York, 1993; pp 103-158.

⁽¹⁵⁾ Yamamoto, Y.; Yatagai, H.; Saito, Y.; Maruyama, K. J. Org. Chem. 1984, 49, 1096.

^{(16) (}a) Brown, H. C.; Rangaishevi, M. V. *Tetrahedron Lett.* **1990**, 31, 7113. (b) Brown, H. C.; Rangaishevi, M. V. Tetrahedron Lett. 1990, 31. 7115.

 $R_2 = i - PrO, OCMe_2CMe_2O$

appears to be influenced by the steric requirements of the boron substituents.

We reinvestigated the reaction between (α -chloroallyl)lithium and 9-methoxy-9-BBN. At -78 °C BF₃·OEt₂promoted decomposition of the resultant ate complex 3 produces a mixture of chloroallylboranes 4 and 5 which upon reaction with aldehydes and treatment with ethanolamine¹⁹ yields syn-chlorohydrins 7 and γ -chlorohydrins 6 in a ratio of 89-85:11-15 (de 84-88%, Scheme 4; Table 1). The inferior diastereoselectivity is attributed to the formation of minor amounts of (E)- $(\gamma$ -chloroallyl)borane **5c** along with major (*Z*)- γ -isomer **5a**. Lowering the temperature (-95 °C) for the formation and decomposition of the ate complex improves the regio- and diastereoselectivities (Table 1). Use of a more sterically demanding base, lithium dicyclohexylamide [LiN(c-Hex)₂], further improves regioselectivity in favor of the syn-chlorohydrin 7 and dramatically improves diastereoselectivity (de = 98%) (Table 2, entry 1). Formation of syn-chlorohydrins 7 requires (Z)-(y-chloroallyl)borane 5a whereas **6** is derived from the (α -chloroallyl)borane **4**.

Regio- and stereoselectivities of reactions of the reagent formed from (α -chloroallyl)lithium, **2a**, and BF₃·OEt₂ are relatively insensitive to reaction conditions (Table 2, entries 1-6). Reaction of (α -chloroallyl)lithium with **2a** at -95 °C followed by demethoxylation of the complex with $BF_3 \cdot OEt_2$ at $-95 \degree C$ and reaction with benzaldehyde at temperatures between -41 °C and -95 °C consistently yields syn-chlorohydrin 7 with 99:1 diastereoselectivity, suggesting 5a is configurationally stable over this temperature range.

We anticipated that introduction of a bulky chiral auxiliary would improve regioselectivity and yield chiral syn-chlorohydrins (Scheme 5). Use of Brown's chiral auxiliary, (-)-B-methoxydiisopinocampheylborane (^dIpc₂-BOMe, **2b**) in the chloroallylboration reaction (-78 °C) with LDA as base enhances the regioselectivity (13:12,

(18) Brown, H. C.; Jayaraman, S. J. Org. Chem. 1993, 58, 6791.
(19) Brown, H. C.; Racherla, U.; Liao, Y.; Khanna, V. V. J. Org.

Chem. 1992, 57, 6608.

ratio 98:2), but the diastereoselectivity (syn vs anti) is only 91:9 (Table 2, entry 8). When the entire reaction sequence is conducted at -95 °C using LiN(c-Hex)₂, regioselectivity increases to the point that no γ -chlorohydrin is detectable and the de increases to 98% (Table 2, entries 13-16).

Preparation of (chloroallyl)borane 13a at -95 °C, followed by warming to room temperature, stirring for 2 h, and recooling to -95 °C for 0.5 h, before reaction at -95 °C with benzaldehyde (Table 2, entry 12), did not lower diastereoselectivity. This experiment provides additional evidence that (γ -chloroallyl)boranes are configurationally stable. Similarly, no decrease in diastereoselectivity is observed when 13a is prepared at -95 $^{\circ}$ C, warmed to -78 $^{\circ}$ C, and reacted with PhCHO at the latter temperature (Table 2, entry 15).

The formation of (Z)-(γ -chloroallyl)boranes may be due to attack of the boron at the γ -position of (α -chloroallyl)lithium or via rearrangment of an initially formed (achloroallyl)borane. Evidence for the formation of (achloroallyl)boranes from (α-chloroallyl)lithiums comes from the observation that treatment of $(\alpha$ -chloroallyl)lithium with methoxy-9-BBN results in a ring-expansion that is most feasible via an $(\alpha$ -chloroallyl)boron ate complex.¹⁸ It is well known that decomposition of allylboron ate complexes with Lewis acids such as BF₃·OEt₂ is accompanied by allylic rearrangement.²⁰ Thus, precedents exist which suggest that $(\gamma$ -chloroallyl)boranes **5** could arise from BF₃·OEt₂-promoted decomposition of α -ate complexes **4** with a concomitant [1,3]-boron shift (Scheme 4). Since previous reports suggest that the [1,3]rearrangement of α -methylallyl-9-BBN to (Z)- and (E)isomers of crotyl-9-BBN occurs at low temperatures.²¹ we examined formation of 4 by low temperature ¹H NMR. In initial experiments we were unable to determine if both (α - and (γ -chloroallyl)boranes were present. The driving force for formation of the (Z)-(γ -chloroallyl)borane may be due to Lewis base behavior of γ -chlorine.

Haloallylborations with 13. The (Z)-halo-substituted allylboranes 13a-d react rapidly with aldehydes at -95 °C to give halohydrins upon ethanolamine workup,¹⁹ and *cis*-vinyloxiranes after oxidative workup.²² High diastereo- and enantioselectivities are realized in these experiments (Scheme 5; Table 3). Routine oxidation (OH⁻/H₂O₂) of the carbon-boron bond²² lowers optical purities of base-sensitive oxiranes compared to their halohydrin precursors and is not recommended (Table 3, entries 3, 4, 7, and 8). Such oxiranes are best obtained by cyclization of corresponding chlorohydrins in a separate step. We successfully employed K₂CO₃/MeOH or KO-t-Bu/THF to generate base-sensitive oxiranes with no diminution of optical purity compared to the chlorohydrin precursors.

The absolute configurations of chlorohydrins, 16 [R =(E)-PhCH=CH, c-Hex] obtained from 2b were determined by hydrogenolysis to alcohols, 21, of known configuration²³ (Scheme 6). The configurations of the hy-

⁽¹⁷⁾ For various methods of synthesis of (\pm) vinylepoxides, see: (a) Mallaiah, K.; Satyanarayana, J.; Ila, H.; Junjappa, H. Tetrahedron Lett. **1993**, *34*, 3145. (b) Julia, M.; Verpeaux, J. N.; Zahneisen, T. Bull. Soc. Chim. Fr. **1994**, *131*, 539. (c) Doucoure, A.; Mauze, B.; Miginiac, L. J. Organomet. Chem. **1982**, *236*, 139. (d) Hoffmann, R. W.; Kemper, B. Tetrahedron **1984**, *40*, 2219. (e) Trost, B. M.; Sudhakar, A. R. J. Am. Chem. Soc. 1988, 110, 7933. (f) Trost, B. M.; Melvin, L. S. Sulfur ylids. Emerging Synthetic Intermediates, Academic Press: New York, 1975. Also, see ref 13c

^{(20) (}a) Hoffmann, R. W.; Feussner, G.; Zeiss, H. J.; Schulz, S. J. Organomet. Chem. 1980, 187, 321. (b) Blais, J.; L'Honoré, A.; Soulié, J.; Cadiot, P. J. Organomet. Chem. 1974, 78, 323.

 ^{(21) (}a) Hancock, K. G.; Kramer, J. D. J. Organomet. Chem. 1974,
 64, C29. (b) Kramer, G. W.; Brown, H. C. J. Organomet. Chem. 1977, 132 9

^{(22) (}a) Jadhav, P. K.; Bhat, K S.; Perumal, P. T.; Brown, H. C. J. Org. Chem. 1986, 51, 432. (b) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.

⁽²³⁾ Jacques, J.; Gros, G.; Bourcier, S. In Stereochemistry; Kagan, H. B, Ed.; G. Thieme, Stuttgart, 1977; Vol 4.

Synthesis of syn-α-Vinylchlorohydrins and cis-Vinylepoxides

Table 1. Reaction of (Chloroallyl)boranes 4 and 5 with Aldehydes at Low Temperatures^a

			chloro	hydrin ^b	vinyloxirane 9^c		
entry	1	R'CHO R' =	yield (%) ^d	α vs γ 7+ 8:6	yield (%) ^{d,e}	<i>cis vs trans^f</i>	
1	1a	Ph	79	85:15	95	92:8	
2	1a	$PhCH_2$	86	87:13	97	94:6	
3	1b	Ph	76	88:12	96	94:6	
4	1b	c-Hex	78	89:11	97	93:7	
5^g	1a	Ph	77	91:9	98	95:5	
6 ^g	1a	c-Hex	76	95:5	98	94:6	

^a Unless noted reactions were carried out at -78 °C, using 1.2 equiv of LDA and 2.6 equiv of BF3. OEt2. ^b Ratios determined by product isolation. ^c Obtained by direct oxidative workup or cyclization of 7 and 8. d Isolated yields. e Yields of chlorohydrin cyclization. ^fRatios determined by ¹H NMR and capillary GC analyses. Capillary GC analyses of chlorohydrins (syn vs anti) gave the same ratio. g Reactions carried out at -95 °C.

drogenation products **21** ($R_1 = PhCH_2CH_2$, c-Hex) were further established by synthesis from ^{*d*}Ipc₂B(allyl). The absolute configurations of other halohydrins and vinyloxiranes resulting from γ -haloallylborations using **2b** and 2c were assigned by analogy with these two correlations.

The enantiopreferences of γ -haloallylborations using 2b and 2c are consistent with those for allylboration reagents derived from (+)- and (–)- α -pinene, respectively (Table 3).²⁴ The enantiopreference observed for $(\gamma$ haloallyl)boranes derived from ^dIpc₂BOMe involves si face attack, which is in agreement with previous reports,^{22a,24} for related reagents (Scheme 7).

Allylborations proceed via initial rapid formation of a carbonyl-boron ate complex and rate-determining formation of a new carbon-carbon bond via a cyclic sixmembered chair transition state. Stereocontrol is manifested during the formation of the new carbon-carbon bond (Scheme 7). Transition states^{25a} for this process are expected to be earlier for $(\gamma$ -haloallyl)borane analogs compared to unsubstituted allylboranes or allylboranes

(24) (a) Brown, H. C.; Randad, R. S.; Bhat, K. S.; Zaidlewicz, M.; Racherla, U. S. J. Am. Chem. Soc. **1990**, *112*, 2389. (b) Brown, H. C.; Bhat, K. S.; Jadhav, P. K. J. Chem. Soc., Perkin Trans. 1 **1991**, 2633.

substituted at the γ -position with electron-donating groups since the former are less nucleophilic at the reacting allyl carbon. Thus, although high stereoselection is observed for reactions of $(\gamma$ -haloallyl)boranes it would be expected to be much more sensitive to temperature and solvent than allylborations with more electronrich analogs.

In agreement with these expectations reaction of $(\gamma$ chloroallyl)borane 13a with benzaldehyde at -78 °C generates syn-chlorohydrin of 78% ee. Lowering the temperature to -95 °C improves the ee to 97% (Table 3, entry 3).

To test the influence of solvent(s) on the enantioselectivity, we added LiN(c-Hex)₂ in THF to a mixture of Ipc₂-BOMe and allyl chloride in diethyl ether at -95 °C. Addition of benzaldehyde followed by workup gives α -chlorohydrin of 97% ee. When the same reaction is conducted using only THF, the ee is lowered to 75% (Table 3, entry 4). In contrast, allylborations with unsubstituted allyl- and (Z)-(γ -alkoxyallyl)boranes proceed with high enantioselectivity which is independent of solvent and is maximum at -78 °C in THF.^{25b}

Reaction of benzaldehyde with (Z)-(γ -bromoallyl)boranes 13b, d, prepared by in situ deprotonation of allyl bromide, generated α -bromohydrins with syn selectivity of 90:10 when benzaldehyde was added at -78 °C (Table 2, entry 9). The (α/γ -bromoallyl)borane reagent was less regio- and diastereoselective than the analogous (α/γ chloroallyl)boranes (Table 2, entries 10 and 11). Lower diastereoselectivity is attributed to steric conjestion and lower Lewis base character of the (Z)- γ -bromine which increases the proportion of (*E*)-isomer.

Effect of Stoichiometry of BF₃·OEt₂. Decomposition of allylboron ate complexes usually requires excess $BF_3 \cdot OEt_2$.²⁶ Treatment of ate complexes **10**, **11** with 1.33 equiv of BF₃·OEt₂ followed by immediate condensation with aldehydes generates mixtures of chlorohydrin and

^{(25) (}a) For transition state energy calculations, see: Vulpetti, A.; Gardner, M.; Gennari.; Bernardi, A.; Goodman, J. M.; Paterson, I. J. Org. Chem. **1993**, 58, 1711. (b) Brown, H. C.; Racherla, U. S.; Pellechia, P. J. J. Org. Chem. 1990, 55, 1868.
(26) Brown, H. C.; Sinclair, J. J. Organomet. Chem. 1977, 131, 163.

Table 2. Haloallylboration of Benzaldehyde under Different Conditions^a

entry	х	temp ₁ (°C) ^b	temp ₂ (°C) ^c	$temp_3$ (°C) ^d	BF ₃ ·OEt ₂ (equiv)	2	halohydrin $\alpha: \gamma^e$	epoxide cis:trans ^f	ee, % (<i>cis)</i> ^g
1	Cl	-95	-95	-95	2.63	2a	95:5	99:1	
2^h	Cl	-95	-95	-95	2.63	2a	98:2	95:5	
3	Cl	-95	-95	-78	1.33	2a	99:1	99:1	
4	Cl	-95	-95	-62	1.33	2a	99:1	99:1	
5	Cl	-95	-95	-41	1.33	2a	>99:<1	99:1	
6	Cl	-95	-95	-95	1.33	2a	>99:<1	99:1	
7	Cl	-95	-95	-95	1.5	2a	96:4	99:1	
8^{i}	Cl	-78	-78	-78	2.63	2b	98:2	91:9	78
9	Br	-78	-78	-78	2.63	2b	96:4	90:10	74
10	Cl	-78	-95	-95	2.63	2b	99:1	99:1	88
11	Br	-78	-95	-95	2.65	2b	98:2	94:6	86
12	Cl	-95	-95^{j}	-95	2.65	2b	>99:<1	99:1	87
13	Cl	-95	-95	-95	1.33	2b	>99:<1	99:1	98
14	Cl	-95	-95	-95	1.66	2b	>99:<1	99:1	97
15	Cl	-95	-95	-78	2.63	2b	>99:<1	99:1	86
16	Cl	-95	-95	-78	1.33	2b	>99:<1	99:1	85

^{*a*} LiN(c-Hex)₂ was used, unless noted. ^{*b*} Temp₁, temperature of ate complex formation. ^{*c*} Temp₂, temperature of ate complex decomposition using BF₃·OEt₂. ^{*d*} Temp₃, temperature of R'CHO addition. ^{*e*} Ratios of α *vs* γ -halohydrins by isolation. *Syn vs anti* ratios of α -halohydrins by capillary GC analysis. This was same as the *cis vs trans* ratios of epoxides. ^{*f*} Obtained by cyclization of chlorohydrins. Ratios by ¹H NMR and capillary GC analyses. ^{*g*} ee's by GC (Cyclodex B, 30 m × 0.25 mm i.d. column) analyses of *syn*- α -halohydrins and epoxides were identical. ^{*h*} Cyclohexanecarboxadehyde was used. ^{*i*} LDA was used. ^{*j*} After decomposition of ate complex, the reaction was warmed to rt for 2 h, and then recooled to -95 °C for 0.5 h before addition of aldehyde.

vinyloxirane (ratio 90:10). The formation of vinyloxirane may result from the presence of dialkylamine. This procedure is suitable for BF₃·OEt₂-sensitive substrates and products. Use of 2.6 equiv of BF₃·OEt₂ results in exclusive chlorohydrin formation (Table 2). Although excess BF₃·OEt₂ increases the proportion of γ -chlorohydrins, it prevents formation of vinyloxirane by complexation with dialkylamine.

Reactions of **13** with benzaldehyde are more sensitive to the amount of $BF_3 \cdot OEt_2$ (Table 4, entries 3–5) than are reactions with aliphatic aldehydes. For reactions in which LDA is used as the base, lowering the amount of $BF_3 \cdot OEt_2$ from 2.5 equiv to 1.33 equiv increases the ee of chlorohydrin from 84% to the maximum obtained in this work, 95%.

Effect of Structure of LiNR₂ Bases on the EE of Chlorohydrins. LDA, LiN(c-Hex)₂, LiTMP, and LiN-(c-Hex)*i*-Pr are reported to efficiently metalate allyl chloride.¹⁸ We briefly examined the effect of base on the enantioselectivity of *syn*-chlorohydrin formation (Table 5). With the exception of LDA, which gave lower diastereo- and enanatioselectivities, all bases examined gave chlorohydrin with comparable diastereo- and enantiomeric composition.

Conclusions

In summary, (α -chloroallyl)lithium, generated *in situ*, is trapped by 9-MeO-9-BBN. Subsequent treatment with BF₃·OEt₂ leads to (Z)-(γ -chloroallyl)borane **5**, which condenses with aldehydes to yield (\pm) *syn*- α -chlorohydrins **7** and (\pm) *cis*-vinyloxiranes **9**.²⁷ Use of ^dIpc₂BOMe or ¹. Ipc₂BOMe in this process leads to (Z)-(γ -chloroallyl)boranes **13a**-**d** which yield chiral chlorohydrins and *cis*vinyloxiranes in high de and ee. A similiar sequence using (bromoallyl)lithium provided chiral *syn*- α -bromohydrins with slightly lower de and ee.

Experimental Section

General Chemical Procedures. THF and diethyl ether were distilled from sodium–benzophenone ketyl. Diisopropy-

lamine, dicyclohexylamine [(c-Hex)2NH], N-isopropylcyclohexylamine, and 2,2,6,6-tetramethylpiperidine were freshly distilled from CaH₂ prior to use. Allyl chloride was freshly distilled over P₂O₅ prior to use. Aldehydes were distilled prior to use. The dIpc2BOMe, dIpc2BOMe, and 9-BBN were purchased from Aldrich and used without purificaton. Moistureand air-sensitive reactions were conducted under argon in vacuum-dried glassware. A nitrogen glove-bag was used to weigh moisture-sensitive compounds. Syringes and cannulas were used to transfer air-sensitive reagents.²⁸ Unless otherwise stated, standard workup refers the combination of organic extracts, washing with ice-cold brine, drying over anhydrous MgSO₄, and concentration in vacuo. ¹H NMR and ¹³C NMR spectra were recorded at 400 and 100 MHz, respectively. GC analyses were conducted using a 30-m \times 0.25-mm i.d. fused silica column coated with DB-1 with FID detection.

General Procedure for Chloroallylboration of Aldehydes Using Ipc₂BOMe syn-(1R,2R)-2-Chloro-1-cyclohexyl-3-buten-1-ol (16a). To a stirred and cooled (-95 °C) mixture of ^dIpc₂BOMe (11.5 mmol) and allyl chloride (15 mmol) in anhyd ether (50 mL) was added a solution of LiN(c-Hex)₂ (15 mmol) in THF (25 mL). After stirring for 1 h, BF₃OEt₂ (30 mmol) was added followed by cyclohexanecarboxaldehyde (11.5 mmol). The reaction was continued at -95 °C for 4 h. All solvents were removed in vacuo at rt, and the residue was triturated with n-pentane (40 mL) and allowed to settle (12 h). The supernatant was transferred to another predried flask by cannula. The residue was further treated with pentane (2 \times 30 mL), and the pentane extracts were combined. Removal of pentane in vacuo furnished a semisolid. (For direct oxidative workup, see synthesis of cis-vinylepoxides). This residue was dissolved in ether and treated with ethanolamine follow-ing the reported procedure.¹⁹ Standard workup followed by flash chromatography (hexane:ether, 95:5) yielded 16a as a colorless liquid (1.5 g, 72% yield): ¹³C NMR and ¹H NMR spectral data are in agreement with those reported.^{17b} $[\alpha]^{23}_{D}$ +56.68 (c = 2.41, CHCl₃).

syn-(1*R*,2*R*)-2-Chloro-1-phenyl-3-buten-1-ol (16b). ¹H NMR and ¹³C NMR spectral data are in agreement with reported values.^{17b} $[\alpha]^{23}_D$ +18.86 (c = 1.92, CHCl₃).

syn-(3*R*,4*R*)-3-Chloro-1-dodecen-4-ol (16c). IR (film) ν 3406, 1077, 987, 927 cm⁻¹. ¹H NMR (CDCl₃) δ 5.94 (ddd, J = 17.6, 10.2, 8.6 Hz, 1H), 5.36 (ddd, J = 17.6, 1, 1 Hz, 1H), 5.23 (ddd, J = 10.2, 1, 1 Hz, 1H), 4.32 (dd, J = 8.7, 5.6 Hz, 1H), 3.65 (m, 1H), 2.17 (d, J = 2.0 Hz, 1H), 1.58–0.86 (m, 17H). ¹³C NMR (CDCl₃) δ 135.45, 118.77, 74.27, 68.85, 34.90, 33.80,

⁽²⁷⁾ Jayaraman, S.; Hu, S.; Oehlschlager, A. C. Tetrahedron Lett. 1995, 36, 4765.

⁽²⁸⁾ Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. Organic Synthesis via Boranes; Wiley-Interscience: New York, 1975.

Scheme 5

19 a R' = c-Hex

29.50, 29.46, 29.20, 25.52, 22.62, 14.01. CIMS m/z (isobutane, rel intensity) 201 [(M⁺ - 18) + 1 (8.3)], 183 (54.3), 165 (68.9), 141 (100). [α]²³_D +35.18 (c = 2.08, CHCl₃). Anal. Calcd for C₁₂H₂₃ClO: C, 65.88; H, 10.60. Found: C, 65.78; H, 10.39.

syn-(2*R*,3*R*)-3-Chloro-1-phenyl-4-penten-2-ol (16d). IR (film) ν 3416, 1604, 1454, 1085, 989, 932 cm⁻¹. ¹H NMR (CDCl₃) δ 7.35–7.23 (m, 5H), 6.03 (ddd, J = 16.9, 10.2, 7.5 Hz, 1H), 5.37 (ddd, J = 16.9, 1, 1 Hz, 1H), 5.28 (ddd, J = 10.2, 1, 1 Hz, 1H), 4.36 (dd, J = 7.7, 4.6 Hz, 1H), 3.94 (m, 1H), 2.97 (dd, J = 13.8, 5 Hz, 1H), 2.81 (dd, J = 13.8, 7.8 Hz, 1H), 2.18 (d, J = 5.6 Hz, 1H). ¹³C NMR (CDCl₃) δ 137.45, 135.27, 129.43, 126.65, 126.76, 119.08, 75.12, 67.06, 40.31. CIMS *m*/*z* (isobutane, rel intensity) 197 [M⁺ + 1 (12.7)], 179 (29.8), 161 (27.5), 151 (4.3), 143 (100), 133 (7.3), 121 (36.7). [α]²³_D + 15.7 (*c* = 2.88, CHCl₃). Anal. Calcd for C₁₁H₁₃ClO: C, 67.18; H, 6.66. Found: C, 66.99; H, 6.78.

syn-(**3***R*,**4***R*)-**3**-**Chloro**-(**5***E*)-**1**,**5**-**octadien**-**4**-**ol** (**16e**). IR (film) ν 3396, 1670, 1640, 1101, 968, 927 cm⁻¹. ¹H NMR (CDCl₃) δ 5.95–5.80 (m, 2H), 5.49–5.43 (m, 1H), 5.35 (ddd, *J* = 16.9, 1, 1 Hz, 1H), 5.24 (ddd, *J* = 10.2, 1, 1 Hz, 1H), 4.33 (ddd, *J* = 14.4, 1, 1 Hz, 1H), 4.16 (t, *J* = 6.4 Hz, 1H), 2.06 (m, 2H), 1.88 (m, 1H), 0.99 (t, *J* = 3.4 Hz, 3H). ¹³C NMR (CDCl₃) δ 136.80, 134.95, 126.78, 118.96, 75.30, 67.91, 25.18, 13.19. CIMS *m*/*z* (isobutane, rel intensity) 143 [(M⁺ – 18) + 1 (100)], 125 (29.8), 107 (57.5). $[\alpha]^{23}_{D}$ +14.50 (c = 2.0, CHCl₃). Anal. Calcd for C₈H₁₃ClO: C, 59.81; H, 8.16. Found: C, 59.69; H, 8.20.

b R' = Ph

syn-(3*R*,4*R*)-4-Chloro-1-phenyl-(5*E*)-1,5-hexadien-3-ol (16f). IR (film) ν 3395, 1651, 1494, 1449, 1070, 967, 931 cm⁻¹. ¹H NMR (CDCl₃) δ 7.42–7.23 (m, 5H), 6.71 (d, J = 15.1 Hz, 1H), 6.21 (dd, J = 15.1, 6 Hz, 1H), 5.98 (ddd, J = 16.9, 10.2, 7.8 Hz, 1H), 5.40 (d, J = 16.9 Hz, 1H), 5.29 (d, J = 10.2 Hz, 1H), 4.65–4.39 (m, 2H), 2.41 (s, 1H). ¹³C NMR (CDCl₃) δ 136.27, 134.63, 133.12, 128.65, 128.06, 126.99, 126.70, 119.54, 75.20, 67.71. EIMS m/z (rel intensity) 208 [M⁺ (4.3)], 172 (21), 133 (100), 115 (26.5), 103 (8.1), 91 (5.5), 77 (12), 55 (12.7). HRMS Calcd for C₁₂H₁₃ClO: 208.0655. Found: 208.0655.

syn-(3*R*,4*R*)-4-Chloro-2-methyl-5-hexen-3-ol (16g). IR (film) ν 3363, 1651, 1416, 1087 cm⁻¹. ¹H NMR (CDCl₃) δ 5.97 (ddd, J = 16.9, 10.2, 6.8 Hz, 1H), 5.37 (ddd, J = 16.9, 1, 1 Hz, 1H), 5.24 (ddd, J = 10.2, 0.7, 0.7 Hz, 1H), 4.50 (dd, J = 8.8, 3.6 Hz, 1H), 3.36 (dd, J = 8.0, 3.6 Hz, 1H), 2.05 (d, J = 6.2 Hz, 1H), 1.87 (m, 1H), 0.97 (dd, J = 9.9, 6.8 Hz, 6H). ¹³C NMR (CDCl₃) δ 135.75, 118.4, 78.90, 67.45, 31.02, 19.67, 16.47. CIMS m/z (isobutane, rel intensity) 149 [(M⁺ + 1 (12.3)], 131 (100). [α]²³_D +55.0 (c = 2.0, CHCl₃). Anal. Calcd for C₇H₁₃-OCl: C. 56.57; H, 8.82. Found: C, 56.72; H, 8.77.

 Table 3. Haloallylboration of Aldehydes with Reagents

 13a-d^a

			<i>syn-</i> halohydrin,			<i>cis</i> - vinyloxirane ^b		
entry	R'CHO R' =	1	2	yield, % ^c	ee, % ^d	yield, $\%^c$	ee, % ^d	cis∕ transe
1	<i>n</i> -C ₈ H ₁₇	1a	2b	70	98	95	98 ^f	99:1
2	<i>i</i> -Pr	1a	2b	68	95	99	95 ^f	98:2
3	Ph	1a	2b	78	98	96	97	98:2
4^{g}	Ph	1a	2b	77	76	97	75	99:1
5	c-Hex	1a	2b	72	95	94	93	98:2
6	PhCH ₂	1a	2b	85	90	98	90	99:1
7	(E)-EtCH=CH	1a	2b	78	99	95	97	99:1
8	(E)-PhCH=CH	1a	2b	75	93 ^h	85 ⁱ	92 ^f	98:2
9	t-Bu	1a	2b	65	78	90	77	97:3
10	Ph	1b	2b	77	95	98	93	96:4
11	c-Hex	1b	2b	71	94	97	92	94:6
12	Ph	1a	2c	75	97	98	94	98:2
13	c-Hex	1a	2c	78	96	96	94	98:2
14	c-Hex	1b	2c	70	94	97	94	95:5
15	Ph	1b	2c	68	93	92	92	94:6

^a Li(c-Hex)₂. Ate complex formation, decomposition (2.5 equiv of BF₃·OEt₂) and aldehyde addition at -95 °C (for solvent details see Experimental Section). ^b Obtained by cyclization of chlorohydrins with K₂CO₃/MeOH, unless noted. If oxiranes are insensitive to base (except entries 3, 6 and 7), they can be obtained by oxidation of intermediates 14 or 15 (NaOH/H₂O₂), without isolation of chlorohydrin. ^c Isolated yields. ^d Ee's determined by GC (Cyclodex B, 30 m \times 0.25 mm i.d. column, carrier gas He at 15 psi, temperature between 100 °C and 200 °C, isothermal), unless noted. The racemic compounds prepared using 9-methoxy-9-BBN instead of Ipc2BOMe. ^e Determined by ¹H NMR and capillary GC analysis. These ratios were same as syn/anti ratios of chlorohydrins (determined by capillary GC analyses). ^fee determined by ¹H NMR analysis (400 MHz) using Eu(hfc)₃. ^g Reaction conducted in THF. ^h Determined by ¹H NMR analysis of MTPA ester. ⁱ Cyclized using KO-t-Bu/THF.

Scheme 6

i) Et₂O,R'CHO, -78 *C; ii) NH₂CH₂CH₂OH, Et₂O; iii) 5% Pd-C / H₂, MeOH

syn-(**3***R*,**4***R*)-**4**-**Chloro-2,2**-**dimethyl**-**5**-**hexen-3**-**ol** (**16h**). IR (film) ν 3396, 1670, 1640, 1101, 968, 927 cm⁻¹. ¹H NMR (CDCl₃) δ 6.05 (ddd, J = 16.9, 10.2, 1 Hz, 1H), 5.31 (ddd, J = 16.9, 1, 1 Hz, 1H), 5.17 (ddd, J = 10.2, 1, 1 Hz, 1H), 4.64 (dd, J = 4.8, 3.6 Hz, 1H), 3.36 (dd, J = 7.8, 3.6 Hz, 1H), 2.24 (d, J = 7.8 Hz, 1H), 1.00 (s, 9H). ¹³C NMR (CDCl₃) δ 137.61, 117.06, 80.34, 66.32, 35.73, 26.77. CIMS m/z (isobutane, rel intensity)

 Table 4. Effect of Proportion of BF₃·OEt₂ on the EE of Chlorohydrins^a

	011010119411115								
entry	R in LiNR ₂	BF ₃ •OEt ₂ (equiv)	R' in R'CHO	<i>syn-</i> α-chlorohydrin 16 , ee % ^b					
1	c-Hex	2.5	c-Hex	95					
2	i-Pr	2.5	c-Hex	93.5					
3	c-Hex	2.5	Ph	98					
4	i-Pr	2.5	Ph	84					
5	i-Pr	1.33	Ph	95					
6	c-Hex	2.5	<i>t-</i> Bu	78					
7	i-Pr	1.33	<i>t</i> -Bu	77					
8	c-Hex	2.5	n-C ₈ H ₁₇	94					
9	i-Pr	2.5	<i>n</i> -C ₈ H ₁₇	93					
10	i-Pr	1.33	<i>n</i> -C ₈ H ₁₇	92					

 a Ate complex formation, decomposition and aldehyde addition at -95 °C. $^{\it d}Ipc_2BOMe$ was used. b ee's determined by GC (Cyclodex B, 30 m \times 0.25 mm i.d. column using conditions given in Table 3).

 Table 5.
 Effect of Lithium Dialkylamide Base Structure on Stereoselectivity of Chlorohydrin Formation^a

			α -chlorohydrin, 16		
entry	lithium dialkylamide used	R'CHO R' =	ee (%) ^b	ds ^c syn vs anti	
1	LDA	c-Hex	94	97:3	
2	LDA	Ph	82	95:5	
3	LiTMP	c-Hex	94	>99:1	
4	Li(<i>i-</i> Pr)c-Hex	c-Hex	93	97:3	
5	LiN(c-Hex) ₂	c-Hex	96	>99:1	
6	LiN(c-Hex) ₂	Ph	98	99:1	

^{*a*} Reactions at -95 °C using ^{*d*}Ipc₂BOMe and 2.5 equiv of BF₃·OEt₂. ^{*b*} ee's determined by GC (Cyclodex B, 30 m × 0.25 mm ID column, using conditions in Table 3). ^{*c*} de's determined by ¹H NMR and capillary GC analysis.

163 [M⁺ + 1 (13.1)], 145 (83.8), 127 (100), 109 (62.1). $[\alpha]^{23}_{D}$ +38.60 (c = 3.50, CHCl₃). Anal. Calcd for C₈H₁₅ClO: C, 59.07; H, 9.30. Found: C, 59.29; H, 9.20.

syn-(1*R*,2*R*)-2-Bromo-1-cyclohexyl-3-buten-1-ol (16i). IR (film) ν 3378, 1494, 1278, 1087 cm⁻¹. ¹H NMR (CDCl₃) δ 6.11 (ddd, J = 16.9, 10, 10 Hz, 1H), 5.31 (ddd, J = 16.9, 1, 1 Hz, 1H), 5.15 (ddd, J = 10, 1, 1 Hz, 1H), 4.70 (dd, J = 17.6, 5.4 Hz, 1H), 3.26 (dd, J = 12, 5.6 Hz, 1H), 1.96 (d, J = 6.6 Hz, 1H), 1.84–1.14 (m, 11H). ¹³C NMR (CDCl₃) δ 136.49, 118.04, 78.09, 62.26, 41.56, 29.79, 26.84, 26.49, 26.22, 25.91. CIMS m/z (isobutane rel intensity) 217 [(M⁺ + 2) - 18 + 1 (13.4)], 215 [(M⁺ - 18) + 1, (13.4)], 153 (81.4), 135 (63.5), 111 (100). [α]²³_D +25.52 (c = 3.02, Et₂O). Anal. Calcd for C₁₀H₁₇BrO: C, 51.71; H, 7.38. Found: C, 51.90; H, 7.35.

syn-(1*R*,2*R*)-2-Bromo-1-phenyl-3-buten-1-ol (16j). IR (film) ν 3445, 1640, 1489, 1425, 1048, 989, 926 cm⁻¹. ¹H NMR (CDCl₃) δ 7.18–7.43 (m, 5H), 5.94 (ddd, J = 17.6, 10.2, 8 Hz, 1H), 5.13 (ddd, J = 17.6, 1, 1 Hz, 1H), 5.03 (ddd, J = 10, 1, 1 Hz, 1H), 4.74 (dd, J = 7.2, 4.1 Hz, 1H), 4.43 (dd, J = 4.1, 3.6 Hz, 1H), 2.81 (d, J = 3.6 Hz, 1H). ¹³C NMR (CDCl₃) δ 135.27, 129.79, 129.04, 128.62, 126.55, 119.19, 77.04, 63.35. CIMS m/z (isobutane, rel intensity) 211 [(M⁺ + 2) - 18 (44.3)], 209 [(M⁺ - 18 (44.3)], 147 (35.9), 129 (59.7), 107 (100). [α]²³_D +36.78 (c = 2.31, CHCl₃). Anal. Calcd for C₁₀H₁₁OBr: C, 53.10; H, 4.91. Found: C, 53.08; H, 4.98.

syn-(1*S*,2*S*)-2-Bromo-1-cyclohexyl-3-buten-1-ol (17a). $[\alpha]^{23}_D - 25.27$ (c = 2.91, Et₂O).

syn-(1.*S*,2.*S*)-2-Bromo-1-phenyl-3-buten-1-ol (17b). $[\alpha]^{23}_{D}$ -34.68 (c = 2.13, CHCl₃).

syn-(1*S*,2*S*)-2-Chloro-1-cyclohexyl-3-buten-1-ol (17c). $[\alpha]^{23}_{D} - 52.57$ (c = 2.21, CHCl₃).

syn-(1.*S*,2.*S*)-2-Chloro-1-phenyl-3-buten-1-ol (17d). $[\alpha]^{23}_{D}$ -18.50 (c = 2.0, CHCl₃).

Synthesis of *cis*-Vinylepoxides 18/19. (i) General Procedure for Oxidation of Boron Intermediates 14/15. The residue obtained (see experimental procedure for preparation of **16a**) was dissolved in THF (20 mL) with stirring and cooled to 0 °C. Then, 3 M NaOH (12 mL) and 30% H_2O_2 (12 mL) were sequentially added. The reaction mixture was allowed

Synthesis of *syn*-α-Vinylchlorohydrins and *cis*-Vinylepoxides

to warm to rt (14 h). Standard workup followed by flash chromatography yielded a colorless liquid, **18a** (1.29 g, 74% yield).

(ii) General Procedure for Cyclization of *syn*- α -Chlorohydrins. To a solution of α -chlorohydrin **16d** (0.95 g, 5 mmol) in MeOH (40 mL) was added K₂CO₃ (1.20 g, 10.0 mmol). This mixture was stirred for 6 h after which time most MeOH was removed *in vacuo*. The resulting slurry was then diluted with water (20 mL), and the mixture was extracted with Et₂O (3 × 40 mL). Standard workup followed by flash chromatography (hexane:Et₂O, 99:1) gave *cis*-vinyloxirane **18d** (0.74 g, 98% yield).

cis-(1*R*,2*S*)-1-Cyclohexyl-1,2-epoxy-3-butene (18a). IR (film) ν 1449, 1256, 1182, 985, 922, 823, 789 cm⁻¹. ¹H NMR (CDCl₃) δ 5.72 (ddd, J = 17.2, 10, 7.4, 1H), 5.47 (ddd, J = 17.2, 1, 1 Hz, 1H), 5.33 (ddd, J = 10, 1, 1 Hz, 1H), 3.39 (dd, J = 7.5, 4.4 Hz, 1H), 2.77 (q, J = 4.4 Hz, 1H), 1.77–1.13 (m, 11H). ¹³C NMR (CDCl₃) δ 133.57, 120.15, 63.45, 57.78, 36.13, 31.67, 28.95, 26.24, 25.78, 25.09. CIMS m/z (isobutane, rel intensity) 153 [M⁺ + 1 (100)], 135 (68.5), 125 (8.7). [α]²³_D +35.18 (c = 2.08, EtOH). Anal. Calcd for C₁₀H₁₆O: C, 78.89; H, 10.59. Found: C, 79.15; H, 10.73.

cis-(1*R*,2*S*)-1,2-Epoxy-1-phenyl-3-butene (18b). IR (film) ν 1496, 1442, 1388, 1250, 1181, 986, 927, 821, 787 cm⁻¹. ¹H NMR (CDCl₃) δ 7.36–7.25 (m, 5H), 5.57–5.53 (m, 1H), 5.43–5.34 (m, 1H), 5.29–5.26 (m, 1H), 4.25 (d, J= 4.1 Hz, 1H), 3.67 (q, J= 4.1 Hz, 1H). ¹³C NMR (CDCl₃) δ 135.19, 132.15, 128.54, 128.13, 127.73, 126.48, 125.53, 121.84, 59.78, 58.85. CIMS m/z (rel intensity) 147 [M⁺ + 1 (100)], 146 [M⁺ (12.5)], 129 (54.7), 119 (11.7), 117 (14.4), 105 (23.0). [α]²³_D +97.36 (c = 2.65, EtOH). Anal. Calcd for C₁₀H₁₀O: C, 82.16; H, 6.89. Found: C, 82.23; H, 6.99.

cis-(3*R*,4*R*)-3,4-Epoxy-1-dodecene (18c). IR (film) ν 1639, 1465, 1256, 984, 922, 815 cm⁻¹. ¹H NMR (CDCl₃) δ 5.71 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H), 5.46 (ddd, J = 17.2, 1, 1 Hz, 1H), 5.34 (ddd, J = 10.2, 1, 1 Hz, 1H), 3.39 (dd, J = 7.2, 4.3 Hz, 1H), 3.06 (m, 1H), 1.58–0.85 (m, 17H). ¹³C NMR (CDCl₃) δ 132.79, 120.04, 58.74, 57.12, 31.80, 29.39, 29.15, 27.73, 26.26, 22.60, 13.98. CIMS m/z (isobutane, rel intensity) 183 [M⁺ + 1 (27)], 165 [(M⁺ - 18) + 1 (12.5)], 141 (100). [α]²³_D + 15.7 (c = 1.56, EtOH). Anal. Calcd for C₁₂H₂₂O: C, 79.06; H, 12.16. Found: C, 79.01; H, 12.20.

cis·(2*R*,3*S*)·2,3-Epoxy-1-phenyl-4-pentene (18d). IR (film) ν 3086, 1639, 1496, 1250, 985, 928, 871, 778 cm⁻¹. ¹H NMR (CDCl₃) δ 7.35–7.23 (m, 5H), 5.90 (ddd, J = 17.2, 10.4, 6.9 Hz, 1H), 5.57 (ddd, J = 17.2, 1, 1 Hz, 1H), 5.46 (ddd, J = 10.4, 1, 1 Hz, 1H), 3.52 (dd, J = 6.9, 4.2 Hz, 1H), 3.33 (ddd, J = 6.1, 6.1, 4.2 Hz, 1H), 2.96 (dd, J = 14.8, 6.0 Hz, 1H), 2.82 (dd, J = 14.8, 6.7 Hz, 1H). ¹³C NMR (CDCl₃) δ 137.68, 132.47, 128.90, 128.64, 126.64, 120.56, 58.96, 57.24, 34.17. EIMS *m*/*z* (rel intensity) 160 [M⁺ (9.7)], 142 (43.3), 131 (17.5), 117 (14.3), 104 (87.5), 103 (47.3), 91 (100), 78 (53.2), 69 (52.8), 51 (18.9), 41 (11.2). [α]²³_D +15.48 (*c* = 3.08, EtOH). Anal. Calcd for C₁₁H₁₂O: C, 82.46; H, 7.55. Found: C, 82.30; H, 7.56.

cis·(**3***R*,**4***S*)-**3**,**4**·Epoxy-(**5***E*)-**1**,**5**-octadiene (18e). IR (film) ν 3088, 1641, 1244, 984, 927, 840, 792 cm⁻¹. ¹H NMR (CDCl₃) δ 6.01 (dt, J = 15.5, 6.4 Hz, 1H), 5.78 (ddd, J = 17.3, 10.2, 7.1 Hz, 1H), 5.50 (dd, J = 17.3, 1.5 Hz, 1H), 5.37 (dd, J = 10.2, 1.5 Hz, 1H), 5.26–5.33 (m, 1H), 3.54 (m, 2H), 2.10 (m, 2H), 1.00 (t, J = 7.6 Hz, 3H). ¹³C NMR (CDCl₃) δ 139.99, 132.71, 122.80, 120.37, 58.84, 58.80, 25.58, 13.18. CIMS m/z (isobutane, rel intensity) 183 [M⁺ + 1 (21.3)], 165 (12.1), 141 (100), 123 (3.7). [α]³_D + 30.83 (c = 1.05, EtOH). Anal. Calcd for C₈H₁₂O: C, 77.38; H, 9.74. Found: C, 77.20; H, 9.90.

cis-(*3R*,*4.S*)-*3*,*4*-Epoxy-1-phenyl-(*1E*)-1,*5*-hexadiene (18f). IR (film) ν 1641, 1494, 1451, 984, 927 cm⁻¹. ¹H NMR (CDCl₃) δ 7.42–7.23 (m, 5H), 6.78 (d, J= 16 Hz, 1H), 6.25 (dd, J= 16, 7.6 Hz, 1H), 5.81 (ddd, J= 17.2, 10.2, 7.2 Hz, 1H), 5.63 (ddd, J= 17.2, 1, 1 Hz, 1H), 5.41 (ddd, J= 10.2, 1, 1 Hz, 1H), 3.74 (ddd, J= 7.6, 4, 1 Hz, 1H), 3.65 (dd, J= 7.2, 4 Hz, 1H). ¹³C NMR (CDCl₃) δ 136.35, 135.70, 132.51, 128.67, 128.33, 128.15, 126.57, 123.49, 120.70, 59.29, 58.85. EIMS m/z (rel intensity) 172 [M⁺ (9.7)], 144 (10.1), 143 (33.9), 129 (17.7), 128 (37), 117 (17.7), 116 (23.5), 115 (100), 65 (10.5), 63 (11.1), 50 (12.7). [α]²³_D +102.0 (c= 0.7, EtOH). HRMS Calcd for C₁₂H₁₂O : 172.0888. Found: 172.0882. *cis*-(**3***R*,**4***S*)-**3**,**4**-Epoxy-5-methyl-1-hexene (18g). IR (film) ν 3034, 1641, 1244, 1197 cm⁻¹. ¹H NMR (CDCl₃) δ 5.75 (ddd, J = 17.2, 10.4, 7.4, 1H), 5.47 (ddd, J = 17.2, 1, 1 Hz, 1H), 5.33 (ddd, J = 10.4, 1, 1 Hz, 1H), 3.44 (dd, J = 7.4, 4.4 Hz, 1H), 2.74 (dd, J = 7.4, 4.4 Hz, 1H), 1.49–1.40 (m, 1H), 1.07 (d, J = 1.3 Hz, 3H), 0.91 (d, J = 1.3 Hz, 3H). ¹³C NMR (CDCl₃) δ 133.78, 120.69, 65.65, 58.78, 28.13, 20.27, 18.38. EIMS m/z 112 [M⁺ (11.2)], 97 (26.5), 83 (18.7), 79 (13.4), 69 (68.7), 56 (100), 41 (29.7). [α]²³_D -69.60 (c = 1.25, EtOH). HRMS Calcd for C₇H₁₂O: 112.0888. Found: 112.0885.

cis-(**3***R*,**4***S*)-**3**,**4**-Epoxy-**2**,**2**-dimethyl-5-hexene (18h). ¹H NMR (CDCl₃) δ 5.94 (ddd, J = 17.8, 10.4, 8 Hz, 1H), 5.47 (dd, J = 17.8, 1 Hz, 1H), 5.27 (dd, J = 10.2, 1 Hz, 1H), 3.47 (dd, J = 8.0, 4.5 Hz, 1H), 2.82 (d, J = 4.5 Hz, 1H), 1.00 (s, 9H). ¹³C NMR (CDCl₃) δ 134.08, 119.44, 67.19, 59.07, 33.63, 27.60. CIMS m/z (isobutane, rel intensity) 143 [(M⁺ – 18) + 1 (100)], 125 (29.8), 107 (57.5). [α]²³_D +15.89 (c = 1.45, EtOH). Anal. Calcd for C₈H₁₄O: C, 76.13; H, 11.19. Found: C, 76.04; H, 11.24.

cis-(1*S*,2*R*)-1-Cyclohexyl-1,2-epoxy-3-butene (19a). $[\alpha]^{23}_{D}$ -38.58 (*c* = 2.68, EtOH).

cis-(1*S*,2*R*)-1,2-Epoxy-1-phenyl-3-butene (19b). $[\alpha]^{23}_{D}$ -90.16 (*c* = 2.05, EtOH).

General Procedure for Chloroallylboration of Aldehydes Using 9-MeO-9-BBN. To a stirred and cooled (-78 °Č) mixture of MeO-9-BBN (11.5 mmol) and allyl chloride (15 mmol) in anhyd ether (50 mL) was added a solution of LiN-(c-Hex)₂ (15 mmol) in THF (25 mL). After stirring for 0.5 h, BF₃·OEt₂ (30 mmol) was added followed by cyclohexanecarboxaldehyde (11.5 mmol). The reaction mixture was stirred for 3 h at -78 °C, then the cold bath was removed and the flask allowed to warm to rt. All solvents were removed in vacuo, and the residue was triturated with *n*-pentane (40 mL) and allowed to settle (12 h). The supernatant was transferred to another predried flask through a cannula. The residue was further treated with pentane (2×30 mL), and the pentane extracts were combined. Removal of pentane in vacuo furnished a semisolid. This was dissolved in ether and treated with ethanolamine following the reported procedure.¹⁹ Standard workup followed by flash chromatography (hexane:ether, 95:5) yielded a mixture of 6a, 7a, and 8a.

Preparation of (\pm) *cis*-vinylepoxide **9b** by oxidation of boron intermediate employed a procedure analogous to that described for the synthesis of **18a**.

(*Z*)-4-Chloro-1-phenyl-3-buten-1-ol (6a). ¹H NMR and ¹³C NMR spectra of **6a** are in agreement with those reported.²⁹ CIMS m/z (isobutane, rel intensity) 165 [(M⁺ – 18) + 1 (100)], 147 (29.8), 129 (100).

(Z)-4-Chloro-1-cyclohexyl-3-buten-1-ol (6b). ¹H NMR (CDCl₃) δ 6.13 (dd, J = 7.1, 1.0 Hz, 1H), 5.90 (dd, J = 9.4, 7.1 Hz, 1H), 3.44–3.49 (m, 1H), 2.60 (s, 1H), 2.32–2.49 (m, 2H), 1.88–1.66 (m, 6H), 1.02–1.39 (m, 5H). ¹³C NMR (CDCl₃) δ 128.6, 119.8, 75.2, 43.5, 32.2, 29.2, 28.0, 26.5, 26.3. CIMS m/z (isobutane, rel intensity) 173 [(M⁺ – 18) + 2 + 1 (8.4)], 171 [(M⁺ – 8) + 1 (28)], 135 (100). Anal. Calcd for C₁₀H₁₇ClO: C, 63.65; H, 9.08. Found: C, 63.50; H, 9.12.

(*Z*)-4-Bromo-1-phenyl-3-buten-1-ol (6c). ¹H NMR and ¹³C NMR spectra of **6c** are in agreement with those reported.²⁹ CIMS m/z (isobutane, rel intensity) 211 [(M⁺ + 2) - 18 (13.4)], 209 [(M⁺ - 18) (13.4)], 153 (21.4), 135 (100).

(Z)-4-Bromo-1-cyclohexyl-3-buten-1-ol (6d). ¹H NMR (CDCl₃) δ 6.27 (m, 2H), 3.48 (ddd, J = 12.0, 5.6, 4 Hz, 1H), 2.41 (dd, J = 4.8, 4 Hz, 1H), 2.34 (m, 1H), 2.15 (s, 1H), 1.87– 0.99 (m, 11H). ¹³C NMR (CDCl₃) δ 131.9, 109.5, 75.1, 43.5, 34.8, 29.2, 28.0, 26.5, 26.3, 26.1. CIMS m/z (isobutane, rel intensity) 217 [(M⁺ + 2) - 18 + 1 (7.4)], 215 [(M⁺ - 18) + 1 (6.9)], 135 (78), 111 (100). Anal. Calcd for C₁₀H₁₇BrO: C, 51.52; H, 7.35. Found: C, 51.65; H, 7.50.

anti-2-Chloro-1-phenyl-3-buten-1-ol (8a). ¹H NMR and ¹³C NMR spectra of **8a** are in agreement with those reported.^{17b}

anti-2-Chloro-1-cyclohexyl-3-buten-1-ol (8b). ¹H NMR and ¹³C NMR spectra of **8b** are in agreement with those reported.^{17b}

^{(29) (}a) Hoffmann, R. W.; Landmann, B. *Chem. Ber.* **1986**, *119*, 1039.
(b) Hoffmann, R. W.; Landmann, B. *Chem. Ber.* **1986**, *119*, 2013.

anti-2-Bromo-1-phenyl-3-buten-1-ol (8c). ¹H NMR (CDCl₃) δ 7.28–7.36 (m, 5H), 6.06 (dt, J = 17.0, 10.2 Hz, 1H), 5.17 (d, J = 17.6 Hz, 1H), 5.13 (d, J = 10.2 Hz, 1H), 4.98 (d, J = 4.4 Hz, 1H), 4.73 (q, J = 4.4 Hz, 1H), 2.79 (s, 1H); ¹³C NMR (CDCl₃) δ 139.53, 134.09, 128.74, 128.45, 126.89, 119.80, 77.21, 60.45. CIMS m/z (isobutane, rel intensity) 211 [(M⁺ + 2) - 18 (42.3)], 209 [(M⁺ - 18) (44.6)], 147 (35.9), 129 (59.7), 107 (100). Anal. Calcd for C₁₀H₁₁BrO: C, 52.89; H, 4.88. Found: C, 53.01; H, 4.95.

anti-2-Bromo-1-cyclohexyl-3-buten-1-ol (8d). ¹H NMR (CDCl₃) δ 6.12 (ddd, J= 17.0, 10.8, 10 Hz, 1H), 5.30 (ddd, J= 17.0, 1, 1 Hz, 1H), 5.19 (ddd, J= 10.8, 1, 1 Hz, 1H), 4.74 (dd, J= 10, 3.6 Hz, 1H), 3.55 (dd, J= 8, 3.6 Hz, 1H), 2.20 (s, 1H), 2.00 (m, 1H), 1.74-0.97 (m, 10H). ¹³C NMR (CDCl₃) δ 134.57, 119.08, 78.50, 59.73, 40.47, 29.05, 28.72, 26.30, 25.96, 25.80. CIMS m/z (isobutane, rel intensity) 217 [(M⁺ + 2) - 18 + 1 (13.4)], 215 [(M⁺ - 18) + 1 (12.6)], 153 (39.4), 135 (100). Anal. Calcd for C₁₀H₁₇BrO: C, 51.52; H, 7.35. Found: C, 51.60; H, 7.45.

*trans***-1,2-Epoxy-1-phenyl-3-butene (9c).** ¹H NMR and ¹³C NMR spectra of **9c** are in agreement with those reported.^{17b}

EIMS *m/z* (rel intensity) 147 [M⁺ + 1 (100)], 146 [M⁺ (12.5)], 129 (61.7), 119 (15.7), 117 (12.3), 105 (28.5).

trans-1-Cyclohexyl-1,2-epoxy-3-butene (9d). ¹H NMR and ¹³C NMR spectra of **9d** are in agreement with those reported. ^{17b} CIMS m/z (isobutane, rel intensity) 153 [(M⁺ + 1) (100)], 135 (78.5), 125 (15.7).

Acknowledgment. We thank the National Sciences and Engineering Research Council, Canada, for financial support through a research grant to ACO.

Supporting Information Available: ¹H and ¹³C NMR spectra for **18f** and **18g** (4 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO960875P